skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cleveland, Cory C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In forests adapted to infrequent (> 100-year) stand-replacing fires, novel short-interval (< 30- year) fires burn young forests before they recover from previous burns. Postfire tree regeneration is reduced, plant communities shift, soils are hotter and drier, but effects on biogeochemical cycling are unresolved. We asked how postfire nitrogen (N) stocks, N availability and N fixation varied in lodgepole pine (Pinus contorta var. latifolia) forests burned at long and short intervals in Grand Teton National Park (Wyoming, USA). In 2021 and 2022, we sampled 0.25-ha plots that burned as long-interval (> 130-year) stand-replacing fire in 2000 (n = 3) or 2016 (n = 3) and nearby plots of shortinterval (16-year) fire that burned as stand-replacing fire in both years (n = 6 ‘reburns’). Five years postfire, aboveground N stocks were 31% lower in short- versus long-interval fire (77 vs. 109 kg N ha-1, respectively) and 76% lower than 21-year-old stands that did not reburn (323 kg N ha-1). However, soil total N averaged 1,072 kg N ha-1 and dominated ecosystem N stocks, which averaged 1,235 kg N ha-1 and did not vary among burn categories. Annual resinsorbed nitrate was highest in reburns and positively correlated with understory species richness and biomass. Lupinus argenteus was sparse, and asymbiotic N fixation rates were modest in all plots (< 0.1 kg N ha-1 y-1). Although ecosystem N stocks were unaffected, high-severity short-interval fire reduced and repartitioned aboveground N stocks and increased N availability. These shifts in N pools and fluxes suggest reburns can markedly alter N cycling in subalpine forests. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Free, publicly-accessible full text available July 17, 2026
  3. Abstract Plant element stoichiometry and stoichiometric flexibility strongly regulate ecosystem responses to global change. Here, we tested three potential mechanistic drivers (climate, soil nutrients, and plant taxonomy) of both using paired foliar and soil nutrient data from terrestrial forested National Ecological Observatory Network sites across the USA. We found that broad patterns of foliar nitrogen (N) and foliar phosphorus (P) are explained by different mechanisms. Plant taxonomy was an important control over all foliar nutrient stoichiometries and concentrations, especially foliar N, which was dominantly related to taxonomy and did not vary across climate or soil gradients. Despite a lack of site‐level correlations between N and environment variables, foliar N exhibited intraspecific flexibility, with numerous species‐specific correlations between foliar N and various environmental factors, demonstrating the variable spatial and temporal scales on which foliar chemistry and stoichiometric flexibility can manifest. In addition to plant taxonomy, foliar P and N:P ratios were also linked to soil nutrient status (extractable P) and climate, especially actual evapotranspiration rates. Our findings highlight the myriad factors that influence foliar chemistry and show that broad patterns cannot be explained by a single consistent mechanism. Furthermore, differing controls over foliar N versus P suggests that each may be sensitive to global change drivers on distinct spatial and temporal scales, potentially resulting in altered ecosystem N:P ratios that have implications for processes ranging from productivity to carbon sequestration. 
    more » « less